Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance
نویسندگان
چکیده
Polymer solar cells based on PDPP5T and PCBM as donor and acceptor materials, respectively, were processed from aqueous nanoparticle dispersions. Careful monitoring and optimization of the concentration of free and surface-bound surfactants in the dispersion, by measuring the conductivity and ζ-potential, is essential to avoid aggregation of nanoparticles at low concentration and dewetting of the film at high concentration. The surfactant concentration is crucial for creating reproducible processing conditions that aid in further developing aqueous nanoparticle processed solar cells. In addition, the effects of adding ethanol, of aging the dispersion, and of replacing [60]PCBM with [70]PCBM to enhance light absorption were studied. The highest power conversion efficiencies (PCEs) obtained are 2.0% for [60]PCBM and 2.4% for [70]PCBM-based devices. These PCEs are limited by bimolecular recombination of photogenerated charges. Cryo-TEM reveals that the two components phase separate in the nanoparticles, forming a PCBM-rich core and a PDPP5T-rich shell and causing a nonoptimal film morphology.
منابع مشابه
Effect of Carbon Nanotube and Surfactant on Processing, Mechanical, Electrical and EMI-Shielding of Epoxy Composites
Dispersing nanoparticles in a polymer matrix is intrinsically challenging due to unfavorable entropic interactions between the matrix and the nanoparticle. In this research dispersion of nanoparticles in polymer matrix was studied and the effect of dispersion on properties was investigated. The properties of polymer composite depend on the type, size, shape, concentration of nanoparticles, and ...
متن کاملPhotocatalytic Degradation of an Anionic Surfactant by Tio2 Nanoparticle under UV Radiation in Aqueous Solutions
In this paper the photocatalytic degradation of the anionic surfactant, linear alkylbenzene sulfonicacid (LABSA) was investigated using UV radiation in the presence of TiO2. Our findingsdemonstrate that various parameters exert their individual influence on the photocatalytic degradationof surfactant in wastewaters. The mentioned parameters have been categorized as follow: the initialpH of the ...
متن کاملEffect of Seed Layer on the Morphology of Zinc Oxide Nanorods as an Electron Transport Layer in Polymer Solar Cells
Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...
متن کاملبهبود چگالی جریان و افزایش کارایی سلول خورشیدی پلیمری P3HT:PCBM با استفاده از نانومیله اکسید روی
Hybrid solar cells combine organic and inorganic materials with the aim of utilizing the low cost cell production of organic photovoltaics (OPV) as well as obtaining other advantages, such as tuneable absorption spectra, from the inorganic component. Whilst hybrid solar cells have the potential to achieve high power conversion efficiencies (PCE), currently obtained efficiencies are quite low. T...
متن کاملThe Performance Evaluation of Viscous-Modified Surfactant Water Flooding in Heavy Oil Reservoirs at Varying Salinity of Injected Polymer-Contained Surfactant Solution
This study examines the effects of change in the concentrations of monovalent and divalent ions in the polymer-contained surfactant solution on the macroscopic behavior of viscous-modified surfactant waterflooding in heavy oil reservoirs. Salts that are used in this set of floods were sodium chloride, magnesium chloride, and calcium chloride. The results indicate that four different ranges ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2017